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In this work a description of the solution of the first fundamental problem in the theory 
of elasticity is obtained for a rectangle in the vicinity of corner points. On the basis of 
this concept a series of conclusions are drawn about the differential properties of the 
solution as a function of properties of boundary functions, and the final formulation of 
the f~damental result of paper [I] is pointed out, In conclusion the behavior of the solu- 

tion is elucidated for the case where the relative width of the rectangle tends to zero. 

1. On the rectangle ABCD (Fig. 1) let us examine the first fundamental problem of 

the theory of elasticity A% ZZZ 6 (1-i) 

u-ZU -0, !/ -- r/=*1; 11 =A f (Y), r’x -7 f fl Ml xzfh (1.2) 

The fundamental objective of this work will be the analysis of the behavior of the 
solution rt of problems (1.1) and (1.2) for the case where the relative width of the plate 

Y tends to zero, i.e. for h -+ L~. The indicated problem ari- 
B 

II 

c 

~ 

ses in the proof of the applied theory of bending of rods and 
in the examination of the accuracy of this theory. The 

-h -I- 
solution is based on the special representation (3. ~22) of __- --- 

*I 

h paper [l], which was obtained with the assumption that 

u E Wp4 (p > 2). The question about the necessity to 

A -I D require that boundary functions f (y) and fr (yf satisfy the 

Fig. 1 
condition u EW,& (p>2), remained open in [l]. 

At present differential properties of solutions of elliptic 

equations inside the region and near the smooth parts of the boundary have been well 
studied. Among the efforts devoted to the investigation of solutions in the vicinity of 

singular points of the boundary the work of Kondrat’ev should be noted [;2]. where gene- 
ral elliptic equations in regions with conic or corner points are investigated. The remain- 

ing papers of this type are either devoted to second order equations, or they impose too 
harsh limitations on the solutions. 

In the present paper an analysis of behavior ofthe solution of problems (1.1) and (1.2) 
in the vicinity of corners of rectangle ABCD is carried out, which in spite of the general 

idea differs from the investigation carried out by Kondrat’ev in 1’21. The method which 

is used by the author was developed by Vorovich who examined the mixed problem of 
the theory of elasticity for a strip and a layer and who elucidated the character of beha- 

vior of the solution of these problems at infinity and at points of separation of boundary 
conditions ( *). 

“) See summaries of Transactions of the III All-Union Conference on Theoretical and 
Applied Mechanics. 
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2, In this section all auxiliary material is collected for subsequent use. 
a) Basic notation: B is the rectangle ABCD; R, a4 is the sector of radius R with 

the center at point A; Cl+, (D) is the space of functions, definite in region D and having 
in this region / th derivatives which satisfy HSlder’s condition with the index a (for 1 = 
= 0 we write C,); L, (a, b) is the space of functions which are summable in the pth 

degree on the section [a, b]; WPz (D) is the space of functions which in region D have 
generalized Ith derivatives summable in the pth degree [3], H, is the set of functions 

u E Wzz (Q) and which satisfy the boundary conditions u js = du / dn Is = 0, where S 
is the boundary of the region Q; W:;1/7’ (a, b) is the space of Slobodetskii 141. 

b) The function u E U’ZZ (61) which satisfies the boundary conditions (1.2) and the 
integral identity 

Se 
AuAvdxdy = 0 (v E Ho) (2.1) 

sii 

is called the generalized solution of the problem (1. l), (1.2). 
Lemma 2.1. If the system of boundary values (1.2) is admissible, then there 

exists a unique function u E Wtz ( 52) which satisfies the problem (1. l), (1.2) in the 
generalized sense [3]. 

The problem of admissibility of the system of boundary values in the case of a region 

with a smooth boundary was completely solved in the work of Slobodetskii [4]. However, 
in the presence of corner points this question still remains open. For the problem (1. l), 

(1.2) we can present the following sufficient condition. 

Lemma 2.2. If f (y), fr (y) E Wsz (-1,l) and in addition if f (+ 1) = f’ (4 1) - 
=fr (f 1) = fr’ (f 1) = 0, then the system of boundary values (1.2) is admissible. 

In the following, however, it will not be assumed that conditions of Lemma 2.2 are 

satisfied. We shall only assume that the system of boundary values is admissible. It fol- 

lows then from imbedding theorems of Sobolev-Kondrashov that: 

f (Y) E c, (-191) (a < I), f (f 1) = 0 (2.2) 

f’ (Y), fl (!I) E L, (-111) (P < =) (2.3) 
and also 

uEC,(Q) @<I) (2.4) 
Lemma 2.3. The function u which is the generalized solution of problem (1. l), 

(1.2) is infinitely differentiable inside Q (see e.g. [3], p. 117). 
Lemma 2.4. If f~C,+,(a, b), and fr~Cl_r,,(% b), l>i* Oca<i, 

a > -1, b < 1, then u e Cl+a (D), where D is a closed subregion of fit, adjoining the 
interval (a, b) and not containing corner points of Q. The following estimate is valid : 

II u II Clfz G c (II f llqfa + II fl Ilq_,+,) 

Lemma 2.5. If f E Wbdl/p (a, b), and fr E W1~l-l’p (a, b), 1 > 2, i < P < 00 

(p > 2 for I = 2),then u E WPf (0) in any closed subregion D of the region 61, adjoin- 
ing the interval (a, b) and not containing corner points of Q. The following estimate is 

valid : II u llwpl d c ( II f IIWpWP + II fl lI~,‘-‘-‘/P) 

Lemmas 2.4 and 2.5 follow from results of work in [S]. 
c) The following integral is called the Mellin transform of function f (r) 

F (s) = rrsM1f (r)dr, s=5+it 

0 

Lemma 2.6. If ram1 f (r) E L, (0, w), where function f (r) is continuous and has 

bounded variation, then 
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3fim 

f W=&- S r-‘F (s)ds 

(3400 

where the integral is undestood in the sense of the principal value [S]. 

Lemma 2.7. If f (r) E L, (a, b) and f (r) 4 0 outside of ]a, bl (a > 0, b < w), 

then F (s) is an entire function. 

Lemma 2.8. If f (r) z 0 for r > a and f (r) E L,(O, a), then F(s) is an analytic 

function in the half-plane o > 1 I P. 

Lemma 2.9. If f (r) 3 0 outside of [a, b] (a > 0, b < =Q) and ! (r) E cl+, (0, co), 
then for large r I F WI6 C II f IICl+n 1 s J-’ 1 en’ 1’ 1 - 1 la 

Lemma 2. 10. If f(r) ECr+a (0, w)and f(r)=Ofor r>a>O,thenP(s) is 

an analytic function in the half-space o > -(I f CC), with the exception of perhaps the 

points s 3 0, -i....,--1, where simple poles are possible. For large z the following 
estimate is valid : I~(~~l~~~~~llfIIC~+aI~I~~l~n~JT~-~ly (r=min@. a+~+4) 

Lemmas 2.7-2.10 are taken from still unpublished work of I, I. Vorovich. 

3, The integral identity (2.1) for any four times continuously differentiable function 
7~ E Ho can be rewritten in the following manner: 

(3-i) 

It is quite evident that the identity (3.1) is valid for a wider classs of functions v, 
namely for v E Ho n Wp4 (Q) (p > 1). In (3.1) let us change to polar coordinates plac- 

ing their origin at point A. The function !J is taken in the form 

V = Fs+zX (F) U (a) (3.2) 

where x (F) s 1 for r d R - 6 (0 < R < 1, O<s<R),x(~)~Ofor r>Rand 
x(r) is infinitely differentiable for 0 < r < 00, and a (u) is four times continuously dif- 
ferentiable. For the function u of form (3.2) to belong to Ho f-l WP4 (Q), it is necessary 

for the following conditions to be fulfilled : (T > 0 (u = Re s), a (0) _ U’ (0) = 
= a (I/.& = u’ (r/2 n) P 0. The identity (3.1) now assumes the following form : 

ss u {F’- *x(r) [aIv + (s2 + (s + 2)2)a” + sa (.~I+ 2)2a] + rsml x’ (r) [(4s + 6) a” + 
nR, A 

+ (4~3 + 18.~2 + 24s $9) a] + rSX” (r) [2a” + (6~2 + 24s + 23) a] + rstl x”’ (r) (4s + 10) c + 
R 

fr ‘+* xiv(r) a) rdrdq + \ [fl (r - 1) rsx (r) a”(1@) - f (F - 1) rs-l x (r) a”’ (l/g)] dr = 0 

0” 

Let us assume (3.3) 

u(rp,r)=[ u(r,‘p)~(r)r~-~dr (3.4) 

R 
0 

Uk((p, s) = \ u(r, (p)~(~)(r)r’-‘+~ dr (Jr:== 1, 2, 3, 4) (3.5) 
Z-6 
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R 

F (s) = 
s 

f (r - I) x(r) rs-‘dr 

0 

F,(s)= f fl(r -1)x (r)+dr 
0 

(3.6) 

(3.7) 

Apparently, U (q, s) will be Mellin’s transform of function u (r, (p) x (r). It follows 
from (2.4) that U (q, s) and U,(cp, S) on [0, r/a n] will be continuous functions of varia- 
ble ‘0, From Lemma 2.3 it follows that U, (rp, S) are infinitely differentiable for cp < ilan 

Substituting (3.4) to (3.7) into (3.3) we obtain 
1/2n 

s 
tUbIV f (32 + (s + 2)2)a” + s2 (s + 2)aa) + U,[(4s + 6)~” + (4s3 + 18s2 + 

0 + 24s + 9)a] + U,[2a” + (6s* + 24s + 23)a] + 
+us (4s + 10)~ + U,a,dcp + F, (~)+a” (‘/.gt) - F (s) a”’ (l/zn) = 0 (3.8) 

Let us introduce the operators 

It is easy to check that for any four times continuously differentiabIe function a (q) 
which statisfies the conditions a (0) = a’ (0) = a” (0) = a”’ (0) = 0 the following rela- 
tionship holds l,Sx 

S 
‘hn =/ax ‘/2x 

Ua”dq = S KUuIV dq, 
s 

Uadq = 
c 

K,UaIVdq (3.9) 
0 0 0 t 

It is also obvious that ‘/ZX 
or (s)u*(i/&- F (s) a”‘(l/gq = \ [l/znFl(s) - F (s) - ‘PFI (s)l aIVd’T (3.10) 

B 
Placing on function a ((p) in (3.8) the new constraint a’ (0) = a”’ (0) = 0 and utiliz- 

ing (3.9) and (3. lo), we obtain 

=I1 x 

s 
(U + K[(s2 f (s + 2)2)U + (4s + 6)U, + 2U,l + K, [s2(s + 2)2U f 

0 

+ (4s3 + 189 + 24s + 9)U1 + (69 + 24s f 23) U, + (3.11) 

+ (4s f 10)U3 + U,l + VZJCF, (4 - F (4 - TF, (s)? aIv (a)da = 0 

Since the expression in braces in identity (3. 11) will be a continuous function of vari- 
able pi, while aIv ((p) is an arbitrary continuous function, then according to the funda- 
mental lemma of variational calculus it follows from (3.11) that 

U (q,s) = -K [(sa + (s + 2)aU + (4s + 6)U, + ZU,] - K, [s2 (s + 2)2U + 

-f (4s3 + 189 + 24s + 9)U, f (6s2 + 24s + 23)U, + (4s + iO)Ua f U,] _P 

+F (a) - l/2fiF, (3) + cpF, (3) (0 d cp < I/an) (3.12) 

The right side of identity (3.12) has two continuous derivatives. Differentiating twice 
we find 

u” = -($ + (s + 2)2)U - (4s + 6)U, - 2U, - K [s2 (s + 2)2U + (4ss + 18s2 + 

+ 24s + 9) U, + (6s2 f 24s + 23) U, + (4s + IO) U, + U,l (3.13) 

The function U is twice continuously differentiable in IO, I/Z n], while U, are infi- 
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nitely differentiable for q < lja rt. Therefore for cp < r/s x , Eq. (3.13) can be differen- 
tiated two more times. As a result we obtain 

lJ1v + (SS + (s c 2)2)P i- ss (s + 2)2U = J4 (ct, s) (3.14) 

Here 

M @, 4 - - [(4s + 6)u”, f 2u,” + (4s’ + i8s2 + 24s + 9) Ur + (6s2 + 24s + 23) x 

x~2+(4s+lo)u,+ U,] (3.15) 

Taking q = r/a n in (3.12) we obtain 

G (% s) IVp=‘,nrr = F (s) (3.16) 

Differentiating (3.12) and putting cp = r12n, we find 

U’ (cp, s):\,=l/,X = Fl @)I (3.17) 

Boundary conditions for U (cp, s) for ‘p = 0 are obtained from (3.4) 

lJ 19-0 = U’l,,s = 9 (3.18) 

Thus, Mellin’s transform of function u (r, 
conditions (3.16) - (3.18). 

4, Let G (cp, q, s) be the Green’s function 
Eq. (3.14) and the boundary conditions 

cp)x (r) satisfies Eq. (3.14) and boundary 

of the differential operator determined by 

u I,0 = u l’9p’,*rr = U’l,, = u’I,,I,,, = 0 

Then the solution of the problem (3.14). (3.16)-(3.18) is written in the form: 
‘/IX 

U(cp, s)= s G(% $9 s)M(Q. s)N+G+al” 0% r/z% s) F (s) - G,,' (CP, l/2n, s) Fl(s) (4.1) 
0 

Green’s function G ((r, $, s) in the explicit form is given by the equations 

G (% ** ‘) = 8s (s + ;) (s + 2) I 
(s + 1) sin [(s + 2) cp - $1 + sin (s + 1) + x 

[ 

n 
X sin 2s -(a+2)(P--SW] *asin(s+2)@-$)r(s+2)sins(cp-$)+ 

+ dl) (cps !s) b(l) (Q, s) + a+44 Is) b(2) (9, s) 

a(4 14(s) 1 
(4.2) 

#)(q, S) = (s + 2)sins ((F - %lm) - co9 ‘/z(s + l)ncos[(s + 2)(F - ‘Irsnl 

a(2)(~, + (S f 2)cos s (q - lldc) - cosV2(s + l)xsid(s f 2)q - %snl 

b(l) (I$, s) = scos[(s f 2)$ - lf,sn] f COS~/~(S + l)nsins ($ - lldn) 

b(s) ($, s)= ssin[(s + 2)9 - ‘lasnl + co+/2 (s + l)ncoss ($ - ‘I4fi) 

D, (s) = s~I$/~(s f i)n - (S + I), D, (s) = sin%(s + 1)~ -P (a f i) (4.3) 

In (4.2) the upper sign is taken for ‘p < 0, the lower sign for cp > $. 
It is evident from (4.2) that G @,$, s) will be a meromorphic function of parameter 

s . This function will have simple poles in those points in which the denominators D, (s) 

and D,(s) become zero. The points s = 0, -1, -2, represent an exception. It is easy 
to check that these points will not be singular for G (cp, 9, s). Subsequently only those 
zeros sk of functions D1 (s) and Li, (s) are of interest for which Re ~1. < 0 (ik # 0, -1, 
-2). We shall renumber them in the order of increasing moduli. giving the same index 

k to zeros with equal moduli (as is evident from (4.3), one index k corresponds to two 
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complex conjugate zeros D, (s) and D, (s)). It is easy to show that 

Sk = -2 - 2k f i1/2n1n2(i + 2k) + 0 (k-link) 

In [B] a table of roots is given for equations shz f 2z/rr = 0. After appropriate trans- 
formations it follows from this table that (*) 

s* Z -3.739 f 1.1195, s, z -5.808 f 1.464i, sa z -7.843 f i.681i ,... (4.4) 

Utilizing the explicit representation (4.2) of the Green function, we can verify directly 

that i Gh’, ‘4, 4 I d C I s I -l, I G;, (a, G-c, s) I d C, I G;:’ (~,%w)I f C I s I (4.5) 

applies in the entire s-plane with the exception of regions near the poles. 

6. The representation (4.1) of function U (9, s) was obtained for u > 0 ; however, it 
also applies for c > -i by virtue of analyticity of the right side of (4.1) (analyticity 
follows from (2.2). (2.3), Lemmas 2.7, 2.8, 2.10 and properties of Green’s function). 
Let us apply the inverse Mellin transform to (4.1). Considering P < R - 6, we obtain 

a+ico 

24 (r. cp)= & 
s 

r-W (cp, s) ds (5.1) 
O-i03 

Here by virtue of !,emma 2.6 we can write o = -1 + 6, where 6 > 0 can be taken 
arbitrarily small. 

It follows from (5.1) that u (7; (F) cannot have singularities 9, where Re s < 1, more 
exactly for Res < 1 lim u (r, q) r+ = 0 

In the derivation of Eq. (5. l), onl;ze fact that function I( belongs to space Was (n) 

and the consequences of this property (2.2)-(2.4) were used. Let us assume now that 

f E Ct+a (--1, R - i), fr E &I+& (-1, R - i), I > 2, 0 <cc <I. Then, according to 
Lemma 2.9 (see (3.15). (3.5) and Lemma 2.4) M*($, s) is an entire function and the 
following estimate is valid: 

1 A4 (qJ, 4 I < c ( II f IIq+a + II fl IICl_l+a) I s l-‘+3 I 8’ T ’ -IV (5.2) 

According to Lemma 2.10, F (s) and F, (s) are analytic in the half-plane o > - 

- (1 -I- a) with perhaps the exception of points s = -1, -2,..., --_I . The following esti- 
mates are valid : 

l~~~~l~~llfll~l,,I~l~zI~“‘~+i-~ly 

I Fl(S) I < c II f II 1 C1_l+a I s I-‘+1 1 en/ 13 I -4 1’ 

It follows from this that u (a, S) is analytically extendable into the strip -(I + a) < 
<‘o < -i and has perhaps in this strip simple poles of points s = sh- and s = -k 

tk = I, 2 ,...,Z). The following estimate results from (5.2) (5.3) and (4.5) 

I u (cp, s) I $ c ( II f IIQ+G + II fl IIcI_l+or) I s I -r+a I en’ ’ + ’ -1 IY (5.4) 

Analyticity of U (cp, s) and estimate (5.4) make it possible in (5.1) to pass from inte- 
gration along the straight line o = -i + S to integration along the straight line 
u = urcol = - (I + a) + 6. In this connection we obtain 

*) The statement of Kondrat’ev r2.1 (p.289) that in the strip 1 < Rez < 2 there is a 
root of the equation sin2 rlznz - z z = 0 is erroneous. The derivation made on the basis 

of this statement is also incorrect. 
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q+,+iw 
1 

u (‘7 9) = 2ni s r-‘U (cp, s)ds + .X res r-‘lJ (cp, s) (5.5) 
ol+a-iw 

Computations in (5.5) must be made with respect to all poles of the function under 

the integral which lie in the strip Us,. < (3 < -i -k 6. We have 

res r-‘U (cp, a) Is=_k = rkAk (cp) (5.6) 
Here 

I [2V cos ‘P + (ntp - 2) sin cpl f’ (6) - [ncp cos cp + (2rP - JG sin cplf~ (0)) 

4 (9) = I/Z [sin2q f”(0) - (‘12n sin2q + sin cp 120s cp - q) fI’ (O)] 

A znfi (qj = (2(L:I)i 
[ 

(00s 2n(p sin cp - &sin 2n cp coscp 
) 

-f(sn+r) (0) + 

+ (1 + &) sin 2n(p sin fp fLzn) (O)] (n = 1, 2, . . .) 

Am+2 @) = (;;:;y. 
i 

sin (2n + 1) ‘p sin ‘p j (2n+2) (0) - 
CC a 

1 + cos(2n+ i)cpsincp- 

1 
- 7jq sin (2n+ 1) cp cos cp 1 fr m+l) (O)} (n= 1, 2, . ..) 

res r-‘U (cp, s) l-Sk = c~~-~Lu~ (cp) (5.7) 

where 
ck = -!- sin 1j4skrt F (sJ + 

cos y&p 

+(k “k+2 
FI (Q - 

1 
‘/2x 

- ‘k @k + l&k + 2, s MN. sk)bk($)d@] (k=24 
0 

1 
CkZ_ 

I 

sinr/ds ?I 
- 

Tk 

cos ‘/dsknF (sk) + ’ Fl(sk) - 
‘k+ 2 

‘/1x 
1 

- 
‘j ~(9, sk)bk(+)d$] (k=2n-1) 

“k(“k+‘)@k+2) ” 

=k t(P) - a(1) @, Sk), b&) = b(1) ($9 Sk), Tk = asin ‘1% s&n + 2 (k = 2n) 

“k t(P) - = @) tP, Sk), bk (‘#) = bG2) (‘#, Sk),! rk = nsinrhshn - 2 (k = 2n - 1) 

Substituting (5.6) and (5.7) into (5.5) we finally obtain 
1 

u (r, cp) = 2 rk A,@) + 2 c,r-“ka,(cp) + 0 (r(‘+a)-8) (5.6) 

k-1 Resk%+a 

As is evident from estimate (5.4). Eq. (5.8) can be differentiated with respect to both 

variables 1 - 3 times. In this manner the theorem is proved. 

Theorem 5.1. If fEC,+,(--1,R-~),f,EC,_,+,(--1,~-~),~~2,0<~<~, 
then function u, which is the generalized solution of problem (1. l), (1.2), in the vicinity 

of point A has an I - 3 times differentiable representation of the form (5.8). 

The representation (5. 8) permits to draw some conclusions about the differential pro- 

perties of function u in the vicinity of corner points, For example : 
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a) If f E cl+= (--I, R - I), fl E Cs+= (-1, R - l)andf’ (--1) = fr (--1) = 0, then 

u (xv Y) E cr+fl (Q&&/J (0 < 6 d 1); 

b) If f E Cs+, t--i,\ R - 1). fl E C4+a (-1, H - l)andf’(-1) = f” (-1) = 
= fl (-1) = fl’ (-1) = 0, then 

u (5, Y) E C,+B (Q&A) (0 < B d i) 

c, If f E C6+a (-1, R - I), fl E C5+, (--I, R-l)andf’(--l)=fW(--l)= 

= f”’ (-I) = fl (-1) = fl’(-I) = fl” (-1) = 0, then 

u (xv Y) E Cs,B @,_,,A) (0 < B < = 0.739) 

d) If f E C’i+a (--I, R - I), fl E C6+, (-1, R - l)andf’ (-1) = f” (-1) = 
= f”’ (-1) = fl (-I)‘= fl’ (4) = fl” (-1) = 0, then 

n (x, Y) E Wp” (Qn-&A) (p < = 7.66) 

For further improvement of differential properties of the function u in the vicinity of 
point, A it is necessary to require that not only the corresponding derivatives of functions 

f and fl become zero at the point -1, but also some first coefficients cl.. 
Statement (d) and Lemmas 2.2 and 2.5 permit to formulate the principal result of 

paper [1] in the following closed form. 

Theorem 5. 2. If f E wp4-1’p (-i,l) n c7+, f-1, R - 1) n c,+, (1 -R, l), 
fl E wp3-up (-41) n C6+a (--I, R - 1) fl C6+= (1 -4 I), P> 2, o<a< i,and 
f (fl) = f’ (fl) = f” (fl) = f”’ (fl) = fl (fl) = fi’ (fl) = fl” (fl) = 0, then 
the solutio u of problem (1. l), (1.2) is uniquely representable in the form 

u (5, y) = 5 [c$zh.(l) (y) cos hl,(‘)z + C$s)uk(2) (y) cos hh.@)Z] (5.9) 
k=l 

6, The representation of the function u (5, y) in the form of a series (5.9) makes it 
possible to analyze the behavior of the function when the relative width of the rectangle 

ABCD tends to zero, i.e. for h -, -a. 
Theorem 6.1. If conditions of Theorem 5.2 are fulfilled, then function u (5, y), 

which is a solution of problem (1. l), (1.2), disappears uniformly together with all deri- 

vatives for h 4 00 in any bounded subregion of the rectangle ABCD= 

In the representation (5.9). as was shown in [l] cl; = 0 (.?-lrxhk--Yz), ai; (y) = 0 (k”“) 

and cos A,s = O(t?‘@l), so that if h + LX, and G remains bounded, then each term of 

series (5.9) decreases exponentially, which proves Theorem 6.1. 
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It is shown that the application of orthogonal polynomials to contact problems [l- 1~21 
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is closely associated with the existence of a certain special calss of so-called polyno- 

mial kernels 1131. In [4, 6, 14, 1.51 particular cases of such kernels were constructed in 

various ways. Here we indicate a method of constructing polynomial kernels, on the 

basis of which not only all the previously constructed kernels may be obtained, but more 
general ones as well. 

1, The eraentiol feature8 of the method of orthogonal polyno- 
mial8. It is known that spatial contact problems with no friction force may be reduced 
to a two-dimensional integral equation oftile first kind. To this equation must be adjoined 

a differential equation as well, if a plate rather than a stamp is being contacted. For 
contact regions such as a half-plane, strip, disk, or annulus, by means of some integral 
transformation or another, one may reduce the indicated two-dimensional system of equa- 
tions to a one-dimensional problem. In the case of a stamp we thus have only a single one- 

dimensional integral equation of the first kind. In the case of a plate, however, we obtain 
a system composed of the equation indicated together with an ordinary differential equa- 
tion. This last can likewise be reduced to an integral equation of the first kind by use 

of the Green’s function for the differential equation obtained. One may get an idea of 

how this is done by looking at the example of a plane contact problem in [1s]. 
Thus, spatial contact problems for the regions enumerated, and also plane problems 

with one contacting segment (sometimes two) may be reduced to solving an integral 
equation of the first kind ,, 

5 K (5, Y) CP (Y! dy.=- I (2) (a d 2 < b) (1.i) 
a 

given on either a finite or a semi-infinite interval. 
Such problems, but with account taken of the surface structure of the contacting bodies, 

were, in the formulation of Shtaerman [lS], reduced to analogous integral equations of 
the second kind 


